Copied to
clipboard

G = D40:C22order 320 = 26·5

3rd semidirect product of D40 and C22 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q16:4D10, SD16:6D10, D40:3C22, C40.5C23, C20.24C24, M4(2):12D10, D20.17C23, Dic10.17C23, D40:C2:3C2, C8:D10:3C2, D4:D5:7C22, (C2xQ8):23D10, C4.192(D4xD5), (C8xD5):5C22, Q8:D5:6C22, C8.C22:6D5, Q8.D10:1C2, C8.5(C22xD5), Q16:D5:2C2, C4oD4.30D10, (C4xD5).101D4, D10.89(C2xD4), C20.245(C2xD4), (D4xD5):10C22, C40:C2:6C22, C8:D5:6C22, (D5xM4(2)):4C2, D4:D10:10C2, (C5xQ16):2C22, (Q8xD5):12C22, C5:Q16:5C22, C4.24(C23xD5), C22.49(D4xD5), SD16:3D5:3C2, (C2xD20):37C22, C5:4(D8:C22), C5:2C8.12C23, (Q8xC10):21C22, (C5xSD16):6C22, (C5xD4).17C23, (C22xD5).52D4, D4.17(C22xD5), (C4xD5).67C23, Q8.17(C22xD5), (C5xQ8).17C23, C20.C23:10C2, D4:2D5:11C22, (C2xC20).115C23, (C2xDic5).252D4, Dic5.102(C2xD4), Q8:2D5:11C22, C4oD20.31C22, C10.125(C22xD4), (C5xM4(2)):6C22, C4.Dic5:15C22, C2.98(C2xD4xD5), (D5xC4oD4):5C2, (C2xC10).70(C2xD4), (C5xC8.C22):2C2, (C2xQ8:2D5):17C2, (C2xC4xD5).172C22, (C2xC4).99(C22xD5), (C5xC4oD4).26C22, SmallGroup(320,1449)

Series: Derived Chief Lower central Upper central

C1C20 — D40:C22
C1C5C10C20C4xD5C2xC4xD5D5xC4oD4 — D40:C22
C5C10C20 — D40:C22
C1C2C2xC4C8.C22

Generators and relations for D40:C22
 G = < a,b,c,d | a40=b2=c2=d2=1, bab=a-1, cac=a21, dad=a29, cbc=a20b, dbd=a8b, cd=dc >

Subgroups: 1038 in 262 conjugacy classes, 99 normal (51 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, Q8, C23, D5, C10, C10, C2xC8, M4(2), M4(2), D8, SD16, SD16, Q16, Q16, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xM4(2), C4oD8, C8:C22, C8.C22, C8.C22, C2xC4oD4, C5:2C8, C40, Dic10, Dic10, C4xD5, C4xD5, D20, D20, D20, C2xDic5, C2xDic5, C5:D4, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C5xQ8, C5xQ8, C22xD5, C22xD5, D8:C22, C8xD5, C8:D5, C40:C2, D40, C4.Dic5, D4:D5, Q8:D5, C5:Q16, C5xM4(2), C5xSD16, C5xQ16, C2xC4xD5, C2xC4xD5, C2xD20, C2xD20, C4oD20, C4oD20, D4xD5, D4xD5, D4:2D5, D4:2D5, Q8xD5, Q8:2D5, Q8:2D5, Q8:2D5, Q8xC10, C5xC4oD4, D5xM4(2), C8:D10, D40:C2, SD16:3D5, Q16:D5, Q8.D10, C20.C23, D4:D10, C5xC8.C22, C2xQ8:2D5, D5xC4oD4, D40:C22
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, C22xD5, D8:C22, D4xD5, C23xD5, C2xD4xD5, D40:C22

Smallest permutation representation of D40:C22
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(41 48)(42 47)(43 46)(44 45)(49 80)(50 79)(51 78)(52 77)(53 76)(54 75)(55 74)(56 73)(57 72)(58 71)(59 70)(60 69)(61 68)(62 67)(63 66)(64 65)
(1 21)(3 23)(5 25)(7 27)(9 29)(11 31)(13 33)(15 35)(17 37)(19 39)(41 61)(43 63)(45 65)(47 67)(49 69)(51 71)(53 73)(55 75)(57 77)(59 79)
(1 75)(2 64)(3 53)(4 42)(5 71)(6 60)(7 49)(8 78)(9 67)(10 56)(11 45)(12 74)(13 63)(14 52)(15 41)(16 70)(17 59)(18 48)(19 77)(20 66)(21 55)(22 44)(23 73)(24 62)(25 51)(26 80)(27 69)(28 58)(29 47)(30 76)(31 65)(32 54)(33 43)(34 72)(35 61)(36 50)(37 79)(38 68)(39 57)(40 46)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,48)(42,47)(43,46)(44,45)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65), (1,21)(3,23)(5,25)(7,27)(9,29)(11,31)(13,33)(15,35)(17,37)(19,39)(41,61)(43,63)(45,65)(47,67)(49,69)(51,71)(53,73)(55,75)(57,77)(59,79), (1,75)(2,64)(3,53)(4,42)(5,71)(6,60)(7,49)(8,78)(9,67)(10,56)(11,45)(12,74)(13,63)(14,52)(15,41)(16,70)(17,59)(18,48)(19,77)(20,66)(21,55)(22,44)(23,73)(24,62)(25,51)(26,80)(27,69)(28,58)(29,47)(30,76)(31,65)(32,54)(33,43)(34,72)(35,61)(36,50)(37,79)(38,68)(39,57)(40,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,48)(42,47)(43,46)(44,45)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65), (1,21)(3,23)(5,25)(7,27)(9,29)(11,31)(13,33)(15,35)(17,37)(19,39)(41,61)(43,63)(45,65)(47,67)(49,69)(51,71)(53,73)(55,75)(57,77)(59,79), (1,75)(2,64)(3,53)(4,42)(5,71)(6,60)(7,49)(8,78)(9,67)(10,56)(11,45)(12,74)(13,63)(14,52)(15,41)(16,70)(17,59)(18,48)(19,77)(20,66)(21,55)(22,44)(23,73)(24,62)(25,51)(26,80)(27,69)(28,58)(29,47)(30,76)(31,65)(32,54)(33,43)(34,72)(35,61)(36,50)(37,79)(38,68)(39,57)(40,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(41,48),(42,47),(43,46),(44,45),(49,80),(50,79),(51,78),(52,77),(53,76),(54,75),(55,74),(56,73),(57,72),(58,71),(59,70),(60,69),(61,68),(62,67),(63,66),(64,65)], [(1,21),(3,23),(5,25),(7,27),(9,29),(11,31),(13,33),(15,35),(17,37),(19,39),(41,61),(43,63),(45,65),(47,67),(49,69),(51,71),(53,73),(55,75),(57,77),(59,79)], [(1,75),(2,64),(3,53),(4,42),(5,71),(6,60),(7,49),(8,78),(9,67),(10,56),(11,45),(12,74),(13,63),(14,52),(15,41),(16,70),(17,59),(18,48),(19,77),(20,66),(21,55),(22,44),(23,73),(24,62),(25,51),(26,80),(27,69),(28,58),(29,47),(30,76),(31,65),(32,54),(33,43),(34,72),(35,61),(36,50),(37,79),(38,68),(39,57),(40,46)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A10B10C10D10E10F20A20B20C20D20E···20J40A40B40C40D
order1222222224444444445588881010101010102020202020···2040404040
size11241010202020224445510202244202022448844448···88888

44 irreducible representations

dim1111111111112222222224448
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10D10D8:C22D4xD5D4xD5D40:C22
kernelD40:C22D5xM4(2)C8:D10D40:C2SD16:3D5Q16:D5Q8.D10C20.C23D4:D10C5xC8.C22C2xQ8:2D5D5xC4oD4C4xD5C2xDic5C22xD5C8.C22M4(2)SD16Q16C2xQ8C4oD4C5C4C22C1
# reps1112222111112112244222222

Matrix representation of D40:C22 in GL8(F41)

28130270000
28191400000
321922280000
03213130000
000033250
000022339
000011360
000009230
,
28130270000
221327160000
22919180000
9028220000
00003838169
00003939832
0000404050
00002332310
,
10000000
01000000
00100000
00010000
000040060
000004040
00000010
00000001
,
30028220000
361122230000
34375360000
372030360000
0000992338
00002332839
000000940
0000003932

G:=sub<GL(8,GF(41))| [28,28,32,0,0,0,0,0,13,19,19,32,0,0,0,0,0,14,22,13,0,0,0,0,27,0,28,13,0,0,0,0,0,0,0,0,3,2,1,0,0,0,0,0,3,2,1,9,0,0,0,0,25,33,36,23,0,0,0,0,0,9,0,0],[28,22,22,9,0,0,0,0,13,13,9,0,0,0,0,0,0,27,19,28,0,0,0,0,27,16,18,22,0,0,0,0,0,0,0,0,38,39,40,23,0,0,0,0,38,39,40,32,0,0,0,0,16,8,5,31,0,0,0,0,9,32,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,6,4,1,0,0,0,0,0,0,0,0,1],[30,36,34,37,0,0,0,0,0,11,37,20,0,0,0,0,28,22,5,30,0,0,0,0,22,23,36,36,0,0,0,0,0,0,0,0,9,23,0,0,0,0,0,0,9,32,0,0,0,0,0,0,23,8,9,39,0,0,0,0,38,39,40,32] >;

D40:C22 in GAP, Magma, Sage, TeX

D_{40}\rtimes C_2^2
% in TeX

G:=Group("D40:C2^2");
// GroupNames label

G:=SmallGroup(320,1449);
// by ID

G=gap.SmallGroup(320,1449);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,1123,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^40=b^2=c^2=d^2=1,b*a*b=a^-1,c*a*c=a^21,d*a*d=a^29,c*b*c=a^20*b,d*b*d=a^8*b,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<